Not sure what it is? Neither are scientists.
Humankind's remotest relative is a very rare micro-organism from south-Norway. The discovery may provide an insight into what life looked like on earth almost one thousand million years ago.
Biologists all over the world have been eagerly awaiting the results of the genetic analysis of one of the world's smallest known species, hereafter called the protozoan, from a little lake 30 kilometer south of Oslo in Norway.
When researchers from the University of Oslo, Norway compared its genes with all other known species in the world, they saw that the protozoan did not fit on any of the main branches of the tree of life. The protozoan is not a fungus, alga, parasite, plant or animal.
"We have found an unknown branch of the tree of life that lives in this lake. It is unique! So far we know of no other group of organisms that descend from closer to the roots of the tree of life than this species. It can be used as a telescope into the primordial micro-cosmos," says an enthusiastic associate professor, Kamran Shalchian-Tabrizi, head of the Microbial Evolution Research Group (MERG) at the University of Oslo.
His research group studies tiny organisms hoping to find answers to large, biological questions within ecology and evolutionary biology, and works across such different fields as biology, genetics, bioinformatics, molecular biology and statistics.
World's oldest creature
Life on Earth can be divided up into two main groups of species, prokaryotes and eukaryotes. The prokaryote species, such as bacteria, are the simplest form of living organisms on Earth. They have no membrane inside their cell and therefore no real cell nucleus. Eukaryote species, such as animals and humankind, plants, fungi and algae, on the other hand do.
The family tree of the protozoan from the lake near Ås starts at the root of the eukaryote species.
"The micro-organism is among the oldest, currently living eukaryote organisms we know of. It evolved around one billion years ago, plus or minus a few hundred million years. It gives us a better understanding of what early life on Earth looked like.," Kamran says to the research magazine Apollon.